Using big data to manage medical expectations — Cynthia Rudin

MIT Sloan Asst. Prof. Cynthia Rudin

From The Health Care Blog 

For all the advances in both medicine and technology, patients still face a bewildering array of advice and information when trying to weigh the possible consequences of certain medical treatments. But a hands-on, data-driven tool I have developed with some colleagues can now help patients obtain personalized predictions for their recovery from surgery. This tool can help patients better manage their expectations about their speed of recovery and long-term effects of the procedure.

People need to be able to fully understand the possible effects of a medical procedure in a realistic and clear way. Seeking to develop a model for recovery curves, we developed a Bayesian modeling approach to recovery curve prediction in order to forecast sexual function levels after prostatectomy, based on the experiences of 300 UCLA clinic patients both before radical prostatectomy surgery and during the four years immediately following surgery. The resulting interactive tool is designed to be used before the patient has a prostatectomy in order to help the patient manage expectations. A central predicted recovery curve shows the patient’s average sexual function over time after the surgery. The tool also displays a range of lighter-colored curves illustrating the broader range of possible outcomes.

Read More »